本文给大家整理了高中必修一数学的部分重要知识点总结,一起看一下具体内容吧,希望对各位同学有帮助。
高中数学必修一知识点梳理
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性
(2)元素的互异性
(3)元素的无序性
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。
2.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
3.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
由所有属于A且属于B的元素所组成的集合,叫做A,B的交集,记作A∩B(读作‘A交B’),即A∩B={x|x∈A,且x∈B}
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集,记作:A∪B(读作‘A并B’),即A∪B={x|x∈A,或x∈B})
数学必修一几何知识点总结
一、柱、锥、台、球的结构特征
1.棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2.棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3.棱台:
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点。
4.圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5.圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6.圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成。
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
7.球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
二、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
二次函数的知识点
一、二次函数的性质
(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab
(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)
二、二次函数的表达式
一般式:y=ax²+bx+c (a≠0)
顶点式:y=a(x-h)²+k 顶点坐标为(h,k)
交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)