奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。下面是小编整理的详细内容,一起来看看吧!
奇函数简介
函数的定义域关于原点对称,并且f(-x)=-f(x),这样的函数f(x)就是奇函数
函数奇偶性判断:
偶函数±偶函数=偶函数
奇函数×奇函数=偶函数
偶函数×偶函数=偶函数
奇函数×偶函数=奇函数
上述奇偶函数乘法规律可总结为:同偶异奇。
奇函数的特点
1、奇函数图象关于原点(0,0)对称。
2、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。
3、若f(x)为奇函数,且在x=0处有意义,则f(0)=0
4、设f(x)在定义域I上可导,若f(x)在I上为奇函数,则f(x)的导函数在I上为偶函数。