求出导数(斜率),设直线方程并联立方程组解出切点。通过切线和曲线相交的点,称为切点,切线与曲线“以相同的方向”,因此切点是曲线上的最佳直线近似点。类似地,在给定点处的表面的切平面是在该点处“正好接触”表面的平面。
什么是切点
在几何学中,在给定点处的平面曲线的切线是在该点处“刚好接触”曲线的直线。莱布尼兹将其定义为通过曲线上一对无限封闭的点的线。更准确地说,如果直线通过曲线上的点(c,f(c)),则直线被称为在曲线上的点x = c处的曲线y = f(x)的切线,并且具有斜率f'(c),其中f'是f的导数。类似的定义适用于n维欧几里德空间中的空间曲线。
知道切点求斜率
假设已知切点是(c,d),导数方程是y=f(x)
斜率k的求解方法:k=f(c),即把切点的横坐标代入导数方程,此时得到的数字就是斜率
切线方程的求解方法:切线方程的一般形式是y=kx+b,其中k是斜率(在上面已经求得),b是截距。我们只需要把切点坐标代入切线方程的一般形式,便可以把b求出。最后,把k和b的数值代入y=kx+b,就可以得到切线方程。