当前位置:首页> 高考备考> 高考复习

从一道函数题看高三数学学习法

热门推荐:

确保高考胜利不再盲目学习高三专家一对一免费评测

十年磨一剑:学而思高三培优冲刺项目正式启动

高三数学与高一、高二有何区别?这是进入高三同学都很关心的。高三数学表面看是应对高考,其实,在这一过程中,始终都涉及各种能力的综合培养与提高。

夯实基础是高三数学学习的第一关,要把各数学分支的相关基础知识、基本技能掌握好。由于高考是选拔性考试,有些试题的综合性较强,对技能技巧要求较高,因此高三数学学习不仅是要掌握基础,还要善于解答一些综合性强的问题,这是第二关。

一道综合题可以把多个知识点有机的结合起来,因而解题环节多,解题过程长,思维强度大,细心程度高,哪儿出了一点问题都会功亏一篑。我们来看一个例子。

例如:

已知奇函数f(x)在(-,0)(0,+)上有定义,且在(0,+)上是增函数,f(1)=0;函数g()=sin2+mcos-2m,[0,/2]。若集合M={m|g()

本题中N是f(x)的复合函数,且不知其具体的表达式,无法求出M与N的交集。当解题困难时,回到已知,因f(x)是奇函数且在(0,+)上是增函数,故f(x)在(—,0)上也是增函数。由f(1)=0知f(-1)=0,由数形结合可知,当f(x)

N={m|f[g()]

MN={{m|g()0恒成立。

这是一个双变量不等式,谁是主元?从条件看是m。但同学们最熟悉的是反客为主的解题思想:令t=cos,则t[0,1],视为t的二次函数,即:(t)=t2-mt+2m-2=(t-m/2)2+2m-2-m2/4,t[0,1]。这是轴变区间定型最值问题,分三种情况讨论,解得MN={m|m>4-2}。

若从主元m的角度考虑,就会想到用分离变量法来解:t2-mt+2m-2>0m>(2-t2)/(2-t),

令h(t)=(2-t2)/(2-t),则h(t)=t2+2/(t-2)+44-2=>m>4-2。

本题集合只是一种符号语言,涉及主要知识点为函数、三角、不等式。

本题涉及主要数学思想方法有:

(1)数形结合思想

此题中有两处用到这种方法,其一是由f(x)

(2)转化与化归的思想

把不等式恒成立问题转化为函数(或不等式)在闭区间的最值(恒成立)问题是第一次转化,本来要求m的范围,却把m视为常数,转化为t为变量的二次函数(或分式函数),欲擒故纵是第二次转化。

本题涉及的技能技巧有:

(1)配方法。不要小瞧它,不少同学配方时经常出错,要格外注意,尤其是对含参数的二次函数配方。

(2)把二次分式转化为能利用重要不等式的恒等变形。

(3)函数最值的恒成立问题:若m>f(x)恒成立,且M=f(x)max,则m>M。

(4)分离变量法。

思想方法和技能技巧是解题的明线,还有暗线。这就是每个人的学习方法、意志力和细心程度,而这往往不为同学所重视。同一个问题,水平相当的同学有的同学可以做出来,有的同学做不出来,或同一个问题对同一个人而言,在不同的情景、不同的心态、不同的解题欲望下就会有不同的结果。方法靠平时积累,意志力靠解题培养,也靠一个人的人生观和价值观的支持。就本题而言,不少同学刚看到题目觉得头绪多,条件抽象,感到无从下手,意志薄弱者会放弃,而意志坚强者充满自信,静下来认真分析会逐渐发现解法,即使不能完全解到底,也能解答部分。

细心是做好一件事的重要保证,对数学学习有特别意义。有些同学每次考试总免不了犯低级错误,丢三落四,离开考场就后悔。每次都以粗心为托词,总是改不了。其实粗心的背后有多种原因,有考试环境中的紧张心态,忙中出错,有基础知识不牢加上考试紧张造成的常识错误,还有一些是平时暴露出来的问题没有引起重视,考试时集中反映出来等,解决的办法是要认真对待每一次失误,找出原因,制定切实的改正措施并落到实处,这样考试中才能发挥实际水平。少一些遗憾,你的考试就成功了!

本题解答过程较长(上述是简写),如果转化为二次函数来解,要解三个不等式组,计算量大,稍有疏忽就会导致错误;若用分离变量法,对代数式恒等变形要求较高,且最后一步对抽象思维能力要求较高。这些环节中每步都不能有差错,才能达到正确结果。

刚进入高三的同学会觉得有些综合题弯子太多,有些知识遗忘,不能很快衔接起来,一时不太适应,一旦适用就好了。倒是一些是平时学习比较刻苦,但灵活性不够的同学队综合题会感到困难。不过这些同学不必自卑,万丈高楼平地起,有坚实的基础总能拾级而上,高考是选拔性考试,不必人人都得满分。

由此可知,高三数学学习首先要重基础,掌握基本公式、定理法则,并在解题实践中学会灵活运用。在此前提下,注重思想方法的运用,提高分析和解决问题的能力,当知识和能力达到一定程度以后,成绩的提高取决于细心程度和意志力。

这样我们知道高三数学学习的状况是:基础知识和基本技能掌握情况反映数学水平高低,细心程度决定考试成绩,意志磨砺贯穿学习始终。相关链接:

9.7讲座:优势学科带动劣势学科消除偏科最快途径

8.31IMO金牌获得者经验交流会回顾

高中三年规划讲座 精彩回顾

走自己的路——高中三年规划细节

六成的学生获得全国高中联赛一等奖

高中三年规划答疑贴

以上内容来源自 东南教育网 //www.30gk.com/,转载请注明出处!

相关推荐

猜你喜欢

大家正在看