一、吃透课本法
很多同学觉得,数学课本上面的题目很简单,都是老师上课讲过的内容,下课以后,往往就把课本放在一边,去做其他一些他们认为难度更高的习题,刚开始我也是这样做的。可是到考试的时候往往是难题做出来了,简单的题目却容易失分——尤其是前面的选择题、填空题这样一些小题。所以要特别注重学习课本,把课本上每一道题都做到位,这也是我要讲的第一点。第二点就是课本上的基本概念和基本思路。课本上面不光是习题重要,更重要的是它的基本概念和基本思路。数学课本有很多黑体字的大概念,这些都是我们平时很注意的,但是在一些小字里面,往往有一些非常细微的概念和原理是容易被忽视的,而考试的时候,往往就是把那些我们忽视的问题拎出来考。而一考大家就倒一大片。所以我们在看课本的时候,一定要把课本上的每一个字,每一个句子,即使很细小的一些原理都要看到。三角函数、立体几何、解析几何的习题中,有很多重要结论,都是应该记住的。吃透课本,不管怎么强调它的重要性都不为过。(湖北文科状元:康静)
二、知识网络法
数学知识点繁多,要做到有条不紊地把握知识点实属不易,需要用一条线将这些零散的知识点串起来。知识网络法可以概括为以下两种模式。第一类,公式推导法。总结必须掌握的公式,知其然也要知其所以然,利用公式间的相互关联进行推导。高考的知识点来源于课本,将课本上的例题改编一下,就可以得到一道高考题,将一些基本题或知识点综合一下,就可以变成一道难题。万变不离其宗,根据日常梳理的知识点,我们便可以将难点个个击破。第二类,构图记忆法,即用画图表的方式将知识点之间的关系、适用条件、特征等标注出来。从书中的一章一节,层层细分,对知识点进行归纳、总结,直到最终脱离书本也能回忆出个中的联系。这种方法听似枯燥、繁杂,实际操作时可以与具体习题(最好难度不大但有一定综合性)结合起来。构图记忆法注重的是基础,提高的是能力。
(江西理科状元:李超)
在解题过程中很多同学因为找不到思路常常无从下笔。数学题无外乎两类:求解题和证明题。求解题让你求的是一个结果,证明题让你证明的是一个结论。我个人比较推祟这样一种方法:将已知条件列出来,看看能推出哪些结论,而这些结论又可以看作条件,再看看这些新的条件又能导出哪些新的结论,一层一层,就像树干的分支一样,越来越多。既然可以顺向推导,同样也可以逆向推导。从你要求的结果或需要证明的问题出发,看看需要哪些条件才能得出所要的结果,而要得到这些条件,又需要哪些更多的条件,一层一层,反向思维。当树枝越伸越多时,最终会有两条交织在一起,此时题目也就迎刃而解了。开始使用这种方法时,的确比较费时,但相当有效,待逐渐熟练之后,往往能够一眼就看中问题的关键,迅速找到突破口。
(湖北理科状元:朱师达)
三、选择题去掉选项法
解选择题有很多种方法,面对简单的选择题,也需要一些简单的技巧,这需要同学们平时在学习中慢慢摸索。但是我觉得解选择题最好的办法就是去掉选项法。培养自己的解题能力,也就是培养自己不被错误选项干扰的能力。尤其是面对一些比较难的、特别繁琐的选择题,我们可以把这些选项给去掉,把它当做填空题来做,把答案写出来之后,再从选项中去找,如果找不到的话,说明你肯定犯了错误。这样的话,还可以避免很多问题——比如有些同学容易看错题目。
以上内容来源自 东南教育网 //www.30gk.com/,转载请注明出处!